Membrane curvature generation by a C-terminal amphipathic helix in peripherin-2/rds, a tetraspanin required for photoreceptor sensory cilium morphogenesis.
نویسندگان
چکیده
Vertebrate vision requires photon absorption by photoreceptor outer segments (OSs), structurally elaborate membranous organelles derived from non-motile sensory cilia. The structure and function of OSs depends on a precise stacking of hundreds of membranous disks. Each disk is fully (as in rods) or partially (as in cones) bounded by a rim, at which the membrane is distorted into an energetically unfavorable high-curvature bend; however, the mechanism(s) underlying disk rim structure is (are) not established. Here, we demonstrate that the intrinsically disordered cytoplasmic C-terminus of the photoreceptor tetraspanin peripherin-2/rds (P/rds) can directly generate membrane curvature. A P/rds C-terminal domain and a peptide mimetic of an amphipathic helix contained within it each generated curvature in liposomes with a composition similar to that of OS disks and in liposomes generated from native OS lipids. Association of the C-terminal domain with liposomes required conical phospholipids, and was promoted by membrane curvature and anionic surface charge, results suggesting that the P/rds C-terminal amphipathic helix can partition into the cytosolic membrane leaflet to generate curvature by a hydrophobic insertion (wedging) mechanism. This activity was evidenced in full-length P/rds by its induction of small-diameter tubulovesicular membrane foci in cultured cells. In sum, the findings suggest that curvature generation by the P/rds C-terminus contributes to the distinctive structure of OS disk rims, and provide insight into how inherited defects in P/rds can disrupt organelle structure to cause retinal disease. They also raise the possibility that tethered amphipathic helices can function for shaping cellular membranes more generally.
منابع مشابه
Peripherin diverts ciliary ectosome release to photoreceptor disc morphogenesis
Formation of membrane discs in photoreceptor cells requires evagination of its ciliary plasma membrane by an unknown molecular mechanism. Salinas et al. (2017. J. Cell Biol. https://doi.org/10.1083/jcb.201608081) show that peripherin (also known as peripherin-2 or peripherin-2/rds) diverts membrane traffic to photoreceptor disc formation by inhibiting ectosome release from the cilium.
متن کاملIn situ visualization of protein interactions in sensory neurons: glutamic acid-rich proteins (GARPs) play differential roles for photoreceptor outer segment scaffolding.
Vertebrate photoreceptors initiate vision via a G-protein-mediated signaling cascade organized within a specialized cilium, the outer segment (OS). The membranous "stacked pancake" architecture of this organelle must be partially renewed daily to maintain cell function and viability; however, neither its static structure nor renewal process is well described in molecular terms. Glutamic acid-ri...
متن کاملAn unconventional secretory pathway mediates the cilia targeting of peripherin/rds.
It is unclear how unconventional secretion interplays with conventional secretion for the normal maintenance and renewal of membrane structures. The photoreceptor sensory cilium is recognized for fast membrane renewal, for which rhodopsin and peripherin/rds (P/rds) play critical roles. Here, we provide evidence that P/rds is targeted to the cilia by an unconventional secretion pathway. When exp...
متن کاملLocalization of peripherin/rds in the disk membranes of cone and rod photoreceptors: relationship to disk membrane morphogenesis and retinal degeneration
The outer segments of vertebrate rod photoreceptor cells consist of an ordered stack of membrane disks, which, except for a few nascent disks at the base of the outer segment, is surrounded by a separate plasma membrane. Previous studies indicate that the protein, peripherin or peripherin/rds, is localized along the rim of mature disks of rod outer segments. A mutation in the gene for this prot...
متن کاملCharacterization of peripherin/rds and rom-1 transport in rod photoreceptors of transgenic and knockout animals.
PURPOSE Peripherin/rds and rom-1 have structural roles in morphogenesis and stabilization of the outer segment, but little is known about their transport and sorting to the rod outer segment. Peripherin/rds and rom-1 trafficking were studied in several knockout and transgenic animal models. METHODS Rod outer segment formation and distribution of peripherin/rds and rom-1 were examined by immun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of cell science
دوره 126 Pt 20 شماره
صفحات -
تاریخ انتشار 2013